
© 2013 EDB All rights reserved. 1

What’s in a Plan?
And how did it get there, anyway?

• Robert Haas | 2018-06-01

© 2018 EDB All rights reserved. 2

typedef struct Plan
{
 NodeTag type;

 /* estimated execution costs for plan (see costsize.c for more info) */
 Cost startup_cost; /* cost expended before fetching any tuples */
 Cost total_cost; /* total cost (assuming all tuples fetched) */

 /* planner's estimate of result size of this plan step */
 double plan_rows; /* number of rows plan is expected to emit */
 int plan_width; /* average row width in bytes */

 /*
 * information needed for parallel query
 */
 bool parallel_aware; /* engage parallel-aware logic? */
 bool parallel_safe; /* OK to use as part of parallel plan? */

 /*
 * Common structural data for all Plan types.
 */
 int plan_node_id; /* unique across entire final plan tree */
 List *targetlist; /* target list to be computed at this node */
 List *qual; /* implicitly-ANDed qual conditions */
 struct Plan *lefttree; /* input plan tree(s) */
 struct Plan *righttree;
 List *initPlan; /* Init Plan nodes (un-correlated expr
 * subselects) */

 /*
 * Information for management of parameter-change-driven rescanning
 */
 Bitmapset *extParam;
 Bitmapset *allParam;
} Plan;

Plan Contents: Structure Definition

© 2018 EDB All rights reserved. 3

• Node Tag

• Costing Information

• Parallel Query Support

• Target List & Qual

• Left & Right Subtrees

• InitPlans

• extParam & allParam

• Type-specific information

Plan Contents: By Category

© 2018 EDB All rights reserved. 4

• PostgreSQL first generates paths representing possible
query plans; winning paths are converted to plans.

• Costs are important at the path stage because they let
us determine which paths are best, but we save the
information in the final plan.

 /*
 * estimated execution costs for plan
 */
 Cost startup_cost;
 Cost total_cost;

 /*
 * planner's estimate of result size
 */
 double plan_rows;
 int plan_width; /* in bytes/row */

Costing Information

© 2018 EDB All rights reserved. 5

• EXPLAIN.

• For a hash join or hashed subplan, row count and
width are used to set the initial size of the hash table.

• For a hash join, should we fetch the first outer tuple
before or after building the hash table?

• Decide between AlternativeSubPlans.

• Decide between custom plans and generic plans.

Costing Information: Uses

© 2018 EDB All rights reserved. 6

 /* engage parallel-aware logic? */
 bool parallel_aware;

 /* OK to use as part of parallel plan? */
 bool parallel_safe;

 /* unique across entire final plan tree */
 int plan_node_id;

Parallel Query

© 2018 EDB All rights reserved. 7

• Why do we need the parallel_aware flag?

 Gather
 -> Merge Join
 -> Parallel Index Scan on a
 -> Index Scan on b

• Why do we need the plan_node_id?

 Gather
 -> Append
 -> Parallel Seq Scan on p1
 -> Parallel Seq Scan on p2
 -> Parallel Seq Scan on p3

Parallel Query: Motivation

© 2018 EDB All rights reserved. 8

 /* target list to be computed at this node */
 List *targetlist;

 /* implicitly-ANDed qual conditions */
 List *qual;

 /* input plan tree(s) */
 struct Plan *lefttree;
 struct Plan *righttree;

Target List, Filter, Left & Right Subtrees (1)

© 2018 EDB All rights reserved. 9

 Merge Left Join
 Output: a.q2, b.q1
 Merge Cond: (a.q2 = (COALESCE(b.q1, '1'::bigint)))
 Filter: (COALESCE(b.q1, '1'::bigint) > 0)
 -> Sort
 Output: a.q2
 Sort Key: a.q2
 -> Seq Scan on public.int8_tbl a
 Output: a.q2
 -> Sort
 Output: b.q1, (COALESCE(b.q1, '1'::bigint))
 Sort Key: (COALESCE(b.q1, '1'::bigint))
 -> Seq Scan on public.int8_tbl b
 Output: b.q1, COALESCE(b.q1, '1'::bigint)

Target List, Filter, Left & Right Subtrees (2)

© 2018 EDB All rights reserved. 10

 Append
 -> Seq Scan on foo
 -> Seq Scan on bar
 -> Seq Scan on baz
 -> Seq Scan on quux

Left, Right, Center Right, Center Left?

© 2018 EDB All rights reserved. 11

regression=# explain (costs off, verbose) select f1,
(select odd from tenk1 where unique1 = f1) from int4_tbl
where f1 = (select min(abs(f1)) from int4_tbl);

 Seq Scan on public.int4_tbl
 Output: int4_tbl.f1, (SubPlan 1)
 Filter: (int4_tbl.f1 = $1)
 InitPlan 2 (returns $1)
 -> Aggregate
 Output: min(abs(int4_tbl_1.f1))
 -> Seq Scan on public.int4_tbl int4_tbl_1
 Output: int4_tbl_1.f1
 SubPlan 1
 -> Index Scan using tenk1_unique1 on public.tenk1
 Output: tenk1.odd
 Index Cond: (tenk1.unique1 = int4_tbl.f1)

InitPlans & SubPlans

© 2018 EDB All rights reserved. 12

• Each Plan node carries a list of associated initPlans.

• SubPlans are not listed; they just appear in
expressions. The executor builds a per-node list at
runtime.

 List *initPlan; /* Init Plan nodes (un-correlated
 * expr subselects) */

InitPlans, not SubPlans!

© 2018 EDB All rights reserved. 13

 /*
 * Information for parameter-change-driven rescanning
 *
 * extParam includes the paramIDs of all external
 * PARAM_EXEC params affecting this plan node or its
 * children. setParam params from the node's
 * initPlans are not included, but their extParams
 * are.
 *
 * allParam includes all the extParam paramIDs, plus
 * the IDs of local params that affect the node (i.e.,
 * the setParams of its initplans). These are _all_
 * the PARAM_EXEC params that affect this node.
 */
 Bitmapset *extParam;
 Bitmapset *allParam;

extParam & allParam

© 2018 EDB All rights reserved. 14

explain (verbose, costs off)
select 1 = all (select (select 1));

 Result
 Output: (SubPlan 2)
 SubPlan 2
 -> Materialize extParam empty, allParam = {$0}←
 Output: ($0)
 InitPlan 1 (returns $0)
 -> Result
 Output: 1
 -> Result
 Output: $0

extParam & allParam: Example

© 2018 EDB All rights reserved. 15

• allParam is used to decide which nodes to reset when
we need to rescan.

• For example, we can rescan a sort either by rereading
the existing output or by throwing away the old output,
regenerating the input, and sorting again.

• If the sort’s input depends on a parameter which has
changed, we need to do the latter; otherwise it’s faster
to do the former.

• extParam is also used for this purpose … barely. It’s
mostly used when assembling the final plan, rather
than at execution time.

extParams & allParams: Execution

© 2018 EDB All rights reserved. 16

Nested Loop
-> Seq Scan on int4_tbl
-> Append
 -> Index Scan using t3i on t3 a
 Index Cond: (expensivefunc(x) = int4_tbl.f1)
 -> Index Scan using t3i on t3 b
 Index Cond: (expensivefunc(x) = int4_tbl.f1)

Where’s the Parameter?

© 2018 EDB All rights reserved. 17

Nested Loop
-> Seq Scan on int4_tbl
-> Append extParam = allParam = {$0}←
 -> Index Scan using t3i on t3 a here too←
 Index Cond: (expensivefunc(x) = int4_tbl.f1)
 -> Index Scan using t3i on t3 b and also here←
 Index Cond: (expensivefunc(x) = int4_tbl.f1)

Where’s the Parameter?

© 2018 EDB All rights reserved. 18

• parallel_safe flag is not displayed.

• plan_node_id is not displayed.

• InitPlans and SubPlans are displayed in the same way,
but only InitPlans are really attached that way.

• extParam and allParam are not displayed, although
you can infer something about them from the InitPlan
display (and from knowledge of how Nested Loops
work).

EXPLAIN vs. Reality – So Far

© 2018 EDB All rights reserved. 19

Nested Loop Left Join
 Output: "*VALUES*".column1, i1.f1, (666)
 Join Filter: ("*VALUES*".column1 = i1.f1)
 -> Values Scan on "*VALUES*"
 Output: "*VALUES*".column1
 -> Materialize
 Output: i1.f1, (666)
 -> Nested Loop Left Join
 Output: i1.f1, 666
 -> Seq Scan on public.int4_tbl i1
 Output: i1.f1
 -> Index Only Scan using tenk1_unique2 on
public.tenk1 i2
 Output: i2.unique2
 Index Cond: (i2.unique2 = i1.f1)

Expression Deparsing: It’s all a lie!

© 2018 EDB All rights reserved. 20

Nested Loop Left Join
 Output: OUTER.1, INNER.1, INNER.2
 Join Filter: (OUTER.1 = INNER.1)
 -> Values Scan on "*VALUES*"
 Output: "*VALUES*".column1
 -> Materialize
 Output: OUTER.1, OUTER.2
 -> Nested Loop Left Join
 Output: OUTER.1, 666
 -> Seq Scan on public.int4_tbl i1
 Output: i1.f1
 -> Index Only Scan using tenk1_unique2 on
public.tenk1 i2
 Output: i2.unique2
 Index Cond: (i2.unique2 = $0)

Expression Deparsing: The lie exposed!

© 2018 EDB All rights reserved. 21

• When we initially generated paths, references to table
columns (internally called “Var” nodes) and
expressions in target list and expressions refer to the
table that will really provide the value.

• But at execution time, it’s not useful to know the
original source of the value – we need to know from
where we can obtain it.

• One of the last stages of planning is to replace Vars
and expressions with Vars that refer to the “outer” or
“inner” plan.

Expression Deparsing: Explained

© 2018 EDB All rights reserved. 22

• Any Questions?

Thanks

	Presentation Title
	Layout: Title and Content, Arial 32pt
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

