DB

ENTERPRISEDB

What's in a Plan?
And how did it get there, anyway?

- Robert Haas | 2018-06-01

Plan Contents: Structure Definition

typedef struct Plan

{

NodeTag type;
/* estimated execution costs for plan (see costsize.c for more info) */
Cost startup_cost; /* cost expended before fetching any tuples */
Cost total cost; /* total cost (assuming all tuples fetched) */
/* planner's estimate of result size of this plan step */
double plan_rows; /* number of rows plan is expected to emit */
int plan width; /* average row width in bytes */
/*

* information needed for parallel query

*/
bool parallel aware; /* engage parallel-aware logic? */
bool parallel safe; /* OK to use as part of parallel plan? */
/*

* Common structural data for all Plan types.

*/
int plan node id; /* unique across entire final plan tree */
List *targetlist; /* target list to be computed at this node */
List *qual; /* implicitly-ANDed qual conditions */
struct Plan *lefttree; /* input plan tree(s) */
struct Plan *righttree;
List *initPlan; /* Init Plan nodes (un-correlated expr

* subselects) */

/*

* Information for management of parameter-change-driven rescanning

*/
Bitmapset *extParam;
Bitmapset *allParam;

} Plan;

D

© 2018 EDB Al rights reserved. 2 ENTERPRISEDB

Plan Contents: By Category

- Node Tag

- Costing Information

- Parallel Query Support
- Target List & Qual

- Left & Right Subtrees
- InitPlans

- extParam & allParam

- Type-specific information

© 2018 EDB Al rights reserved. 3 ENTERPRISEDB

Costing Information

PostgreSQL first generates paths representing possible
qguery plans; winning paths are converted to plans.

Costs are important at the path stage because they let
us determine which paths are best, but we save the
information in the final plan.

/ *
* estimated execution costs for plan
*/
Cost startup cost;
Cost total cost;
/ *
* planner's estimate of result size
*/
double plan rows;
int plan width; /* in bytes/row */

D

© 2018 EDB Al rights reserved. 4 ENTERPRISEDB

Costing Information: Uses

- EXPLAIN.

- For a hash join or hashed subplan, row count and
width are used to set the initial size of the hash table.

- For a hash join, should we fetch the first outer tuple
before or after building the hash table?

- Decide between AlternativeSubPlans.

- Decide between custom plans and generic plans.

© 2018 EDB Al rights reserved. 5 . ENTERPRISEDB

Parallel Query

/* engage parallel-aware logic? */
bool parallel aware;

/* OK to use as part of parallel plan? */
bool parallel safe;

/* unique across entire final plan tree */
int plan node id;

D

© 2018 EDB Al rights reserved. 6 ENTERPRISEDB

Parallel Query: Motivation

Why do we need the parallel _aware flag?

Gather

-> Merge Join
-> Parallel Index Scan on a
-> Index Scan on b

Why do we need the plan_node id?

Gather

-> Append
-> Parallel Seq Scan on pl
-> Parallel Seq Scan on p2
-> Parallel Seq Scan on p3

© 2018 EDB Al rights reserved. 7

D

ENTERPRISEDB

Target List, Filter, Left & Right Subtrees (1)

/* target list to be computed at this node */
List *targetlist;

/* implicitly-ANDed qual conditions */
List *qual;

/* input plan tree(s) */
struct Plan *lefttree;
struct Plan *righttree;

—

D

© 2018 EDB Al rights reserved. 8 ENTERPRISEDB

Target List, Filter, Left & Right Subtrees (2)

Merge Left Join
Output: a.qg2, b.ql
Merge Cond: (a.q2 = (COALESCE(b.gql, 'l'::bigint)))
Filter: (COALESCE(b.ql, 'l'::bigint) > 0)
-> Sort
Output: a.g2
Sort Key: a.q2
-> Seq Scan on public.int8 tbl a
Output: a.qg2
-> Sort
Output: b.gl, (COALESCE(b.ql, 'l1'::bigint))
Sort Key: (COALESCE(b.ql, 'l'::bigint))
-> Seq Scan on public.int8 tbl b
Output: b.gl, COALESCE(b.gl, 'l'::bigint)

—

© 2018 EDB Al rights reserved. 9 ENTERPRISEDB

Left, Right, Center Right, Center Left?

Append
-> Seq
-> Seq
-> Seq
-> Seq

© 2018 EDB All rights reserved.

Scan
Scan
Scan
Scan

on
on
on
on

foo
bar
baz
quux

10

EEEEEEEEEEEE

InitPlans & SubPlans

regression=# explain (costs off, verbose) select f1,
(select odd from tenkl where uniquel = f1) from int4 tbl
where f1 = (select min(abs(fl)) from int4 tbl);

Seq Scan on public.int4 tbl
Output: int4 tbl.fl, (SubPlan 1)
Filter: (int4 tbl.fl = §$1)
InitPlan 2 (returns $1)
-> Aggregate
Output: min(abs(int4 tbl 1.f1))
-> Seq Scan on public.int4 tbl int4 tbl 1
Output: int4 tbl 1.fl
SubPlan 1
-> 1Index Scan using tenkl uniquel on public.tenkl
Output: tenkl.odd
Index Cond: (tenkl.uniquel = int4 tbl.fl)

D

© 2018 EDB Al rights reserved. 11 ENTERPRISEDB

InitPlans, not SubPlans!

Each Plan node carries a list of associated initPlans.

SubPlans are not listed; they just appear in
expressions. The executor builds a per-node list at

runtime.

List *initPlan; /* Init Plan nodes (un-correlated
* expr subselects) */

D

© 2018 EDB Al rights reserved. 12 ENTERPRISEDB

extParam & allParam

Information for parameter-change-driven rescanning

extParam includes the paramIDs of all external
PARAM EXEC params affecting this plan node or its
children. setParam params from the node's
initPlans are not included, but their extParams
are.

allParam includes all the extParam paramIDs, plus
the IDs of local params that affect the node (i.e.,
the setParams of its initplans). These are all
the PARAM EXEC params that affect this node.

* ok %k ok ok K *F K ok ¥ ok *

*

*/
Bitmapset *extParam;
Bitmapset *allParam;

D

© 2018 EDB Al rights reserved. 13 ENTERPRISEDB

extParam & allParam: Example

explain (verbose, costs off)
select 1 = all (select (select 1));

Result
Output: (SubPlan 2)
SubPlan 2
-> Materialize ¢ extParam empty, allParam = {S$S0}
Output: ($0)
InitPlan 1 (returns $0)
-> Result
Output: 1
-> Result
Output: SO

—

D

© 2018 EDB Al rights reserved. 14 ENTERPRISEDB

extParams & allParams: Execution

- allParam is used to decide which nodes to reset when
we need to rescan.

- For example, we can rescan a sort either by rereading
the existing output or by throwing away the old output,
regenerating the input, and sorting again.

If the sort’s input depends on a parameter which has
changed, we need to do the latter; otherwise it's faster
to do the former.

- extParam is also used for this purpose ... barely. It's
mostly used when assembling the final plan, rather
than at execution time.

© 2018 EDB Al rights reserved. 55 ENTERPRISEDB

Where’s the Parameter?

Nested Loop
-> Seq Scan on int4 tbl

—-> Append
-> Index Scan using t3i on t3 a
Index Cond: (expensivefunc(x) = int4 tbl.fl)
-> Index Scan using t3i on t3 b
Index Cond: (expensivefunc(x) = int4 tbl.fl)

D

© 2018 EDB Al rights reserved. 16 ENTERPRISEDB

Where’s the Parameter?

Nested Loop
-> Seq Scan on int4 tbl
-> Append ¢« extParam = allParam = {S0}
-> Index Scan using t3i on t3 a < here too

Index Cond: (expensivefunc(x) = int4 tbl.fl)
—-> Index Scan using t3i on t3 b ¢« and also here
Index Cond: (expensivefunc(x) = int4 tbl.fl)

© 2018 EDB Al rights reserved. 17 ENTERPRISEDB

EXPLAIN vs. Reality — So Far

- parallel_safe flag is not displayed.

- plan_node _id is not displayed.
InitPlans and SubPlans are displayed in the same way,
but only InitPlans are really attached that way.

- extParam and allParam are not displayed, although
you can infer something about them from the InitPlan
display (and from knowledge of how Nested Loops

work).

© 2018 EDB Al rights reserved. i - ENTERPRISEDB

Expression Deparsing: It's all a lie!

Nested Loop Left Join
Output: "*VALUES*".columnl, 1il.fl, (666)
Join Filter: ("*VALUES*".columnl = il.fl)
-> Values Scan on "*VALUES*"
Output: "*VALUES*".columnl
-> Materialize
Output: il1l.f1, (666)
-> Nested Loop Left Join
Output: il.f1l, 666
-> Seq Scan on public.int4 tbl il
Output: 1i1.f1
-> Index Only Scan using tenkl unique2 on
public.tenkl 12
Output: i2.unique2
Index Cond: (i2.unique2 = 1l1l.fl)

© 2018 EDB Al rights reserved. 19 ENTERPRISEDB

Expression Deparsing: The lie exposed!

Nested Loop Left Join
Output: OUTER.1, INNER.1l, INNER.2
Join Filter: (OUTER.1l = INNER.1)
-> Values Scan on "*VALUES*"
Output: "*VALUES*".columnl
-> Materialize
Output: OUTER.1l, OUTER.Z2
-> Nested Loop Left Join
Output: OUTER.1, 666
-> Seq Scan on public.int4 tbl il
Output: 1i1.f1
-> Index Only Scan using tenkl unique2 on
public.tenkl 12
Output: i2.unique2
Index Cond: (i2.unique2 = S$S0)

—

© 2018 EDB Al rights reserved. 20 ENTERPRISEDB

Expression Deparsing: Explained

- When we initially generated paths, references to table
columns (internally called “Var” nodes) and
expressions in target list and expressions refer to the
table that will really provide the value.

- But at execution time, it's not useful to know the
original source of the value — we need to know from
where we can obtain it.

- One of the last stages of planning is to replace Vars
and expressions with Vars that refer to the “outer” or
“inner” plan.

© 2018 EDB Al rights reserved. 21 ENTERPRISEDB

Thanks

Any Questions?

D

© 2018 EDB Al rights reserved. 22 ENTERPRISEDB

	Presentation Title
	Layout: Title and Content, Arial 32pt
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

